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NONEQUILIBRIUM HYPERSONIC STAGNATION FLOW 

WITH ARBITRARY SURFACE CATALYCITY INCLUDING 

LOW REYNOLDS NUMBER EFFECTS? 
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Aerospace Corporation, El Segundo, California 

(Rereived IO September 1965 and in revised form 17 February 1966) 

Abstract-Dissociated stagnation point flow on highly cooled blunt bodies in a hypersonic stream of air 
or diatomic gas is considered, including low Reynolds number effects and nonequilibrium chemical reac- 
tion throughout the shock layer. An arbitrary atom recombination rate on the surface is allowed. Based on 
the continuum thin shock layer model of Cheng, it is shown that in many applications the significant 
gas phase reaction effects occur in a generalized nonequilibrium vorticity-interaction flow regime, in- 
cluding the transition from recombination rate to dissociation rate-controlled behavior. An approximate 
analytical solution is given for this regime which predicts atom concentrations and nonequilibrium heat 

transfer within 10 per cent of exact numerical solutions down to shock layer Reynolds numbers of 100. 

NOMENCLATURE 

dissociation rate parameter ; 

frozen specific heat of mixture ; 
boundary-layer dissociation rate dis- 
tribution function ; 
stream function in similarity plane ; 
vertical inviscid flow field function ; 
dissociation energy per unit atom 
mass ; 
total enthalpy ; 

ai, e Le 4d~p Ti, e ; 
I,, 1, boundary-layer flow field functions ; 
9,, go, St, Sj, boundary-layer reaction 

rate integrals (equations 46a, 46b); 
9 FI. 2. 3’ S$, frozen boundary-layer inte- 

- grals ; 

k DY dissociation rate ; 
k 

g(T), 
recombination rate (= k; T”); 
equilibrium constant (equation 9) ; 

Le, Lewis number (Pr/Sc) ; 
P9 static pressure ; 

Pr, Prandtl number ; 
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nondimensional heat-transfer rate ; 
parameter for inviscid reaction effect 
on boundary layer ; 
body nose radius ; 
molecular gas constant ; 
universal gas constant ; 
shock layer Reynolds number 

(P, V,&/A); 
boundary-layer recombination rate 
distribution function ; 
inviscid flow reaction rate distribu- 
tion function; 
pre-exponential temperature-depen- 
dence of dissociation rate, 
Schmidt number ; 
static absolute temperature; 
characteristic dissociation tempera- 
t Ure ( = h,/R,) ; 
characteristic vibrational energy ex- 
citation temperature; 
free stream flow velocity ; 
net atom production rate from chemi- 
cal reaction ; 
physical coordinates along. and nor- 
mal to body, respectively ; 

~I%,.; 

z(“)/zF, w’ 
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Greek Symbols 
atom mass fraction ; 
inviscid stagnation point velocity gra- 
dient ; 
catalytic efficiency of wall surface ; 
Damkijhler number for boundary 
layer recombination ; 
composite Damkohler number for 
gas phase and surface reaction ; 
Damklihler number for inviscid dis- 
sociation reaction ; 
shock standoff distance ; 
Damkdhler number for catalytic atom 
recombination on wall ; 
similarity coordinate at stagnation 
point ; 

TITi,e; 
shock velocity slip parameter ; 
coefficient of shear viscosity ; 
density of mixture ; 
inviscid flow reaction rate integrals ; 
recombination rate temperature-de- 
pendence exponent. 

Subscripts 

e, conditions at edge of boundary layer ; 

eq, equilibrium shock layer ; 

F, chemically frozen shock layer ; 

i, inviscid flow solution ; 

s, post-shock conditions ; 

W, conditions in gas at the wall ; 
cc, free stream conditions. 

1. INTRODUCTION 

THE PROBLEM of predicting stagnation point 
heat transfer from nonequilibrium-dissociated 
shock layers on blunt bodies arises frequently 
in reentry technology, fundamental experi- 
mental studies of reacting gas flows, and in the 
development of catalytic probes for measuring 
state properties in highly dissociated gas flows. 
Numerous solutions [l-8] of this problem have 
been given for the high Reynolds number limit 
where nonequilibrium reaction is confined to a 
thin boundary layer with the surrounding in- 
viscid flow in equilibrium. However, in the 

aforementioned applications, significant non- 
equilibrium effects on heat transfer can also 
occur at low Reynolds numbers where classical 
boundary-layer theory no longer applies and 
nonequilibrium flow exists throughout the shock 
layer. Although there are several numerical solu- 
tions that describe this regime [9, lo], the only 
analytical solutions to have been carried out are 
restricted to very small degrees of dissociation 
and negligible recombination rate throughout 
the shock layer [II, 171. 

As is frequently the case with numerical solu- 
tions, the available results for the fully-viscous 
nonequilibrium shock layer problem describe 
but a few of the many cases encountered in 
practice. Furthermore, existing solutions are 
confined to the extremes of either a perfectly 
catalytic or completely non-catalytic surface, 
although it is evident from the results that inter- 
mediate degrees of surface catalycity can have an 
significant effect on nonequilibrium heat trans- 
fer. These limitations emphasize the desirability 
of an approximate theory of nonequilibrium 
viscous stagnation point flow which provides 
closed-form engineering solutions for gas phase- 
surface properties such as heat transfer over a 
wide range of shock layer conditions, including 
low Reynolds number effects and the simul- 
taneous effects of both homogeneous and hetero- 
geneous reaction. This paper presents such a 
theory for hypersonic dissociating diatomic 
gas flows around highly-cooled blunt bodies. In 
Section 2, the governing equations and boundary 
conditions are set forth, based on a continuum 
thin shock layer flow model due to Cheng [lo, 
121. In most cases it is observed that nonequili- 
brium reaction in the shock layer essentially 
takes place within the realm of a nonequilibrium 
vorticity-interaction flow regime composed of a 
boundary layer (which is not necessarily thin) 
embedded in a region of vertical nonequilibrium 
inviscid flow. An approximate analytic solution 
for the nonequilibrium heat transfer in this 
regime is then presented in Section 3. Finally, 
applications are discussed in Section 4, including 
comparisons with numerical solutions and an 
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evaluation of the effects of finite surface cataly- 
city. 

2. FORMULATION OF THE PROBLEM 

Consider the flow of a nonequilibrium- 
dissociating gas across the shock layer at the 
stagnation point of a two-dimensional or axi- 
symmetric blunt body (Fig. 1). The body is 
regarded as nonablating with a first-order cataly- 
tic atom recombination reaction taking place 
on the surface. The present analysis is based on 

BOW 

FIG. 1. Flow configuration. 

the thin, hypersonic shock layer model of 
Cheng [lo-121. According to this model, there 
exists a strong bow shock wave of negligible 
thickness that is concentric with the body at the 
stagnation line. Across the shock, the static 
pressure and normal velocity component are 
taken to be discontinuous according to the 
usual Hugoniot relations ; however, discon- 
tinuities in composition, tangential velocity, and 
total enthalpy (the so-called “shock slip” effects) 
are allowed. Between the shock and the body 
there is assumed a thin (d/R, G 1) layer of 
continuum, viscous reacting gas flow across 
which the pressure variation is negligible. In 
this layer, the influence of body curvature and 
surface slip phenomena is also neglected in 
comparison to the shock layer vorticity and 
shock slip effects, when the body is highly cooled. 

To simplify the analysis, while retaining the 

3c 

features essential for determining nonequili- 
brium reaction effects on overall shock layer 
properties such as heat transfer, the following 
additional assumptions are made. (1) The gas is, 
or can be reasonably approximated by, a binary 
gas mixture composed of atoms (mass fraction a) 
and molecules. (2) Prandtl number, Schmidt 
number, and the density-viscosity product are 
each constant across the shock layer. (3) Ther- 
mal diffusion effects are negligible. (4) Excited 
electronic internal energy states are neglected. 
(5) The average specific heat of the mixture is a 
constant, Assumption (1) is exact for a pure dia- 
tomic gas and has been shown to be a satisfactory 
approximation for high temperature air in the 
absence of ablation products or thermally 
significant ionization when appropriately aver- 
aged thermo-chemical properties are used [l, 7, 
91. The customary simplifying assumptions 
(2H5) likewise have been amply qualified as 
satisfactory engineering approximations for non- 
ablating, highly cooled blunt bodies unless 
the liner details of the temperature and com- 
position profiles across the shock layer are of 
interest [l, 7-10, 131. 

(b) Governing relations 
An important consequence of the thin shock 

layer model adopted here is that the governing 
Navier-Stokes flow equations reduce to the 
familiar parabolic differential equations of boun- 
dary-layer theory [lo]. Taking advantage of the 
known self-similar nature of these equations 
for stagnation point flow, a stream function is 
introduced 

in terms of the similarity coordinate 

q = [(l;;‘j’ jpdY 

0 

(2) 

where pi is defined as the inviscid stagnation 
point velocity gradient and PR& is evaluated at 
an appropriately chosen reference condition in 
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the shock layer. Then, using the above as- 
sumptions and writing p(y) = constant = 

Pi, W? dpJdx = -pi &x with the subscript i 
denoting the inviscid solution, the governing 
flow equations of momentum, atomic specie 
mass, and energy conservation, respectively, are 

ff" + f"' = (1 + v)-" f'2 h.w 

( > 

(3) 
P 

Sc$x’ + a” = - (1 + vjpi SC (++dPj (4) 

Pr fH’ + H” + (Le - l)h,a” = 0 (5) 

where a prime denotes differentiation with 
respect to q, h, is the dissociation energy per 
unit atom mass, and tiJp is the net rate of atom 
production from homogeneous chemical re- 
action as given below. The local total enthalpy 
H is given in the strong shock approximation 

H 2: c,,T + ah,. (6) 

By virtue of equations (4) and (6), the energy 
equation (5) can be rewritten in the following 
form involving T explicitly, which proves useful 
later : 

Pr hd ~-.- PrfT' + T" = t1 + vjpic, (Go/P). (7) 

There is considered here a mixture of atoms 
and molecules undergoing the dissociation- 
recombination reaction 

$2A+X A2 + X kR 

where A,, A, and X denote a molecule, atom and 
any third body collision partner, respectively. 
For this reaction, application of the laws of 
phenomenological chemical kinetics and mass 
action plus the equation of state p = pR, (1 
-I- a)T yields 

!G 
_2 = 4kXT”(p/R,T)2 
P 

a2 -~ 
l-!-a I 

(8) 

where the equilibrium constant X(T) = 
R~Tk~/k~ may be represented by [7,9] 

X(T) z AT”(1 - exp [--T,,iT]j 

exp [ - T,/T}. (9) 

In equations (8)and (9), k, = kXT” is an averaged 
recombination rate for the mixture, W, A and s 
are constants, TD 5 hd/R, and TV is a charac- 
teristic temperature for molecular vibrational 
energy excitation. (Specific values of the various 
thermochemical parameters employed are cited 
later.) The two terms on the right-hand side of 
equation (8) represent the effect of dissociation 
and recombination, respectively. They are ex- 
actly equal in the limiting case of equilibrium- 
dissociating flow, where equation (4) becomes 
superfluous. 

Low Reynolds number effects enter the 
present formulation explicitly through the outer 
boundary conditions at the shock wave. Allow- 
ing for shear, heat conduction and diffusion 
behind the bow shock in the manner described 
by Cheng [IO, 12}, conservation of tangential 
momentum, atomic specie mass, and total energy 
across the shock surface at q = qS yields 

X 
H’kJ 

[ 

+ We - l)hd a’(k) 
Prf, I 

112) 

where H, = a, h, + #J’~,) in the strong shock 
approximation. The last terms in each of these 
equations constitute jumps (or slip) in tangential 
velocity, concentration, and total enthalpy 
across the shock due to the post-shock gradients 
in these quantities. It is seen that the shock 
transition is non-adiabatic when the last term 
in equation (12) becomes comparable to the 
free stream total energy. 

Now, an additional boundary condition is 
required since the shock location qS is unknown 
in the general case. This is supplied by a mass 
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conservation statement across the bow shock 
at the stagnation line in the similarity variables, 
which yields 

In the high Reynolds number limit of boundary- 
layer flow, where the shock is considered in- 
finitely far from the body, one may discard 
equation (13) and neglect the shock slip terms 
in equations (lOj-(12). 

The inner boundary conditions at the body 
surface are 

f(0) = f’(0) = 0 (14) 

T(O) = T, (given) (15) 

H(0) = H, = CpTw + a(O)& (16) 

SC K 
a’(0) = 2 PRPR ’ 

[ 1 (1 + VPi 
40) 

P-w 

= L a(O) (17) 

In equation (17), K, is the speed of catalytic 
atom recombination on the surface, a known 
function of T,, wall material, and the particular 

gas; it is related to the catalytic efficiency yW 
by yW = K,(n/R,T,)*. The parameter 5;, is the 
Damk~hler number for heterogeneous reaction ; 
when [, + co, the surface is completely catalytic 
[a(O) = O], whereas &,, = 0 implies that the 
surface is perfectly non-catalytic [a'(O) = 01. 
Once the governing equations are solved, the 
surface heat-transfer rate 4, is computed from 
either of the two relations 

PRPR 

[ 1 k pr 4, _ -- = 
(I + O)Bi Pw 

Qw 

= H'(O) + (Le - l)hd a’(O) (lga) 

= EP T’(0) + Le hd a'(0) W-4 

(c) Some important physical features 
It is clear that exact solutions to the foregoing 

nonlinear boundary value problem must be 
carried out numerically on a digital computer. 
However, by examining some results of existing 
numerical studies, one can devise a simplified 
theoretical model of the problem which applies 
throughout the entire nonequilibrium flow re- 
gime occurring in most applications. 

Consider Fig. 2, where the nondimensional 
shock standoff distance obtained by various 

L.__-...-_ 

/-P,+VP,R~ 

FICZ. 2. Nonequilibrium stagnation shock layer properties. 
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investigations [9, 10, 14, 151 for highly-cooled 
bodies is plotted versus Reynolds number. Also 
shown is the corresponding nondimensjonal 
thickness y=/R~ of that part of the shock layer 
near the wall which contains 99 per cent of the 
enthalpy variation across the shock layer. 
Indicated on the graph are the Reynolds num- 
bers where velocity and total enthalpy shock 
slip become important, plus the lowest Reynolds 
numbers at which appreciable departure from 
equilibrium at Y, and chemical freezing of the 
flow throughout the shock layer occur for 
R, < 3 ft and V, d 25000 ft/s. Now it can be 
seen from Fig. 2 that there is a distinct region of 
essentially adiabatic flow adjacent to the shock 
throughout most of the nonequilibrium-dis- 
sociating shock layer regime. That is, when the 
Reynolds number is low enough that the entire 
shock layer flow is fully viscous and a non- 
adiabatic shock transition (total enthalpy shock 
slip) occurs, this flow has become almost com- 
pletely chemically frozen throughout. Figure 2 
also indicates the well-known fact that the 
physical shock standoff distance is relatively 
insensitive to Reynolds number when the shock 
wave is adiabatic, while the corresponding 
enthalpy sublayer (boundary layer) thickness 
grows as Re;*. In contrast, the opposite situa- 
tion is true in the similarity plane, where the 
shock distance (in terms off) varies as Ret 
while the outer edgef, of the enthalpy sublayer 
remains essentially fixed until f, approaches f, 
closely. 

It should be pointed out that the adiabatic 
flow region identified above can also be taken 
to be one of inviscid (albeit vertical) flow, while 
retaining velocity and concentration slip terms 
in the boundary conditions (10) and (11). This 
can be shown by a detailed analysis of the govern- 
ing equations [16] and is corroborated by 
numerical results [lo]. 

The foregoing observations suggest that for 
nose radii on the order of a foot or less and 
Right speeds V, 5 25 000 ftjs (or total enthalpies 
equivalent thereto), the nonequilibrium stag- 
nation point heat-transfer problem in air or 

airlike-gases can be conveniently broken down 
into two successive flow regimes. The first, and 
most important, ranges from the usual high 
Reynolds number situation of a thin boundary 
layer surrounded by an equilibrium-dissociated 
inviscid shock layer down to values of Re, a 
10’ where the shock layer becomes almost-fully 
viscous with nearly chemicaily-frozen flow 
throughout. In this regime, which is the subject 
of the present paper, there exists an outer region 
of vertical, nonequilibrium inviscid shock layer 
flow surrounding an inner (but not necessarily 
thin) boundary layer. The second regime at 
lower Reynolds numbers involves a fully vis- 
cous nonadiabatic shock layer flow with apprec- 
iable slip in total enthalpy (as well as velocity 
and concentration) behind the shock. Here, the 
gas phase reaction effects may be taken as small 
perturbations on a frozen flow solution and the 
recombination rate neglected throughout the 
shock layer. Analytical solutions to this problem 
that include shock slip effects have been given 
by Inger [16] and Buckmaster [17]. 

3. APPROXIMATE SOLUTION FOR THE 

GENE~ZED VOR~C~-~~A~ON 

REGIME 

We shall proceed by obtaining an approxi- 
mate closed form solution for the boundary- 
layer region (allowing For reaction therein) and 
matching it with a corresponding nonequili- 
brium inviscid flow solution. This approach is 
similar to Cheng’s vorticity interaction theory 
Cl23 for a perfect gas, generalized here to include 
the effects of nonequilibrium reaction through- 
out the shock layer, arbitrary surface catalycity 
and first-order velocity, concentration and tem- 
perature shock slip effects based on the inviscid 
flow gradients. 

(a) Outer inviscid$flow region 
Consider first the inviscid nonequilibrium 

flow in the region f, < f G f,. This flow is 
governed by equations (3) to (5) with the highest 
order derivatives of tl and f dropped, plus the 
following integral of the energy equation for 
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adiabatic conditions : 

Hi(V) N Hm N Ep T(rt) + ai h, (19) 

The boundary conditions at the shock are given 
by equations (10) and (1 l), respectively, whereas 
only the single boundary condition h(O) = 0 
from equation (14) is to be applied at the body 
surface. 

The inviscid momentum equation, viewed as 
a first-order differential equation in j-i” with fi 
as the independent variable, can be integrated 
directly with the use of equation (10) to 

fi 

dp’df df p?fW +v) 1 (20) 

where 

c = f:,oh) + P +“I 
6 2lcf 

1 1 l- l+ 4Pi, 22 4f:dG * 
4/(1 +e Pi,sfs 

+fBl('+'). II (21) 
with fi, o(qs) f Vm/fiiRb and K, s p,&(l + V) 
pRpR J‘“~“‘(~~“). Equation (20) generalizes the 
velocity-stream function relationship given in 
Hayes and Probstein [18] for a hypersonic, 
vertical, constant density shock layer flow to the 
case where nonequilibrium reaction is present. 
[The density integral term introduces the chemi- 
cal reaction effect ; it can be dropped in the strong 
shock approximation for either chemically 
frozen flow (pi = pi,,) or equilibrium flow 

(Pi = Pi,eq = Pi,w).] Now, the primary interest 
here lies in determining ~iCfi) and T(jJ rather 
than the velocity field. Since the effect of chemi- 
cal reaction on these profiles depends only 
weakly on the details of the velocity distribution 
[19], the effect of chemical reaction onf;(r) may 
be neglected to a first approximation by taking 
pi = pi,s in equation (20); thus we obtain 

[ 

z/(l+v) 4 

f;(q) = y + Cf&) 
1,s 1 

An analytical solution of equations (4) (with 
CC” dropped), (8) and (19) for the inviscid atom 
concentration and temperature distributions 
can now be obtained by adapting a technique 
due to Gibson and Sowyrda [19]. For this 
purpose, it is convenient to nondimensionalize 
T with respect to TD and thus rewrite these 
equations as 

ficc; = - &tifi E - [(1 _ &) (~-’ 

(1 - exp [ - TV/T]) exp [- GJTI 

-~(~~-‘~]ri (23) 

T/G = (&/‘~p)[(Hcml~J - ai] (24) 

where gi is a net reaction rate distribution 
function composed of contributions from dis- 
sociation and recombination, respectively, and 

k’A T;+“p 

ri = (1 + V) (RJTD)2 pi 
(25) 

is a characteristic (flow time/dissociation time) 
ratio for the inviscid flow. Since equation (24) 
allows Wi to be expressed as a function of Cli 
alone, equation (23) may be regarded as a 
separable first order differential equation and 
thus integrated using boundary condition (11) 
to obtain the following implicit solution : 

where 

XC%) = XCcri,s) + ri Fti) (26) 

bi s = c1, + [Ps I& ri Wi(%, s)IPR PR Sc_fs"] 
and 

A detailed study [19] of the function I for 
the Lighthill ideal dissociating gas model [20] 
has shown that the effect of recombination may 
be neglected until Cli is quite close to the equili- 
brium value Cli,, attained at the body g = 0). 
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Consequently, it is possible to accurately ap- 
proximate x(aJ by 

where Xd(ai) is the value of x(Cli) with the recom- 
bination rate term neglected. The dissociation 
rate function xd(ai) is plotted in Figs. 3(a) and 
3(b) for typical values of the three parameters 
i$,/R,, H,/h, and w f s. It is seen that this 
function is quite sensitive to both the recom- 
bination rate temperature exponent o and the 
characteristic temperature ratio T,/‘& 

The function Flfi) can be expressed in the 
following closed form when approximation (22) 
is used : 

F(J) N (‘z”> (z)‘ln 

x [f + ej:“‘+“)]+ + !_ 
II1+ Cf;“““‘]” - 1 

> 

x f2s) 

where c = pi,s C/p,+. We note that Fff;) is 
logarithmically infinite at fi =. 0, reflecting the 
fact that the locul inviscid flow time becomes 
infinite at the body. This is consistent with 
equation (26), since it correctly implies that 
x + c/c, and hence pi --+ 0 and cli -+ Cli,, as 
6 + 0 for all values of Ti. 

The foregoing solution affords a relatively 
simple analytical determination of the non- 
equilibrium inviscid flow properties. One first 
establishes the post-shock conditions by an 
iterative calculation (which is unnecessary if 
shock slip effects are neglected), starting with the 
known conditions for zero slip. The first 
approximation for Q - CI,, so obtained is 
usually sufficient in practice. One then can 
obtain x(cri) as a function of fi from equations 
(26) and (28) and thus find ai and 7$jJ from 
equation (27), Fig. 3, and equation (24). It is 
noted that the present nonequilibrium in- 
viscid flow solution possesses the important 

property of binary scaling [21] throughout that 
portion of the shock layer where recombination 
can be neglected. 

‘I- 

L I 

'0 02 Q.4 06 0.8 I.0 

a, 

Fit;. 3. Inviscid dissociation rate integral ~~[a,). 
(a) Effect of o + s. 
(b) Effect of H,,;h,. 



(b) lnnrr boundary-layer region reaction on the velocity profile when overall 
Here, we must solve equations (3), (4) and (8) properties such as heat transfer are of interest 

as they stand subject to all the wall boundary [3, 7991. 
conditions (14) to (17). The outer boundary The solution proceeds in a manner similar to 
cdnditions are determined by matching with the analysis of reference [7], taking care here to 
the foregoing inviscid solution in the following account for the presence of a nonequilibrium, 
way. To the order of approximation involved in vertical inviscid flow at the edge of the boundary 
the present generalized vorticity interaction layer. Thus, by introducing the new dependent 
model, each of the dependent variablesf’, c( and variables z = a/~~,~, 0 = T/l& and using 
T at the outer edge f, of the boundary layer equations (8) and (9) evaluated at f = f, to 
must be equal to the corresponding inviscid express .X(T,)/p in terms of (\ii,/p), and c&J 
flow values at the same value of the stream (1 + ai,.), equations (4) and (7) can be rewritten 
functionfi = f, [18]. (It can be shown through as 
detailed analysis that this procedure also in- Gli,e rb 9b(z, O) 
sures matching of the gradients in velocity, 

Scf 2’ + Z” = 

atom concentration and temperature when the 
l + %,e 

nonequilibrium state of the inviscid flow is 
q 

cli, e 
gi(cri,e) ~b(Z, 0) (29) 

taken into account [16].) 
To the same order of approximation and in Prf 6’ + 0” = - H,(ScfZ’ + Z”) (30) 

keeping with the earlier discussion of Fig. 2,f, 
is determined as follows. When f, > f,, f, is 

where 

taken to be independent of Reynolds number 
and equal to the value offat H/H, = 0.99 given 

r 
b 

= 4 SC kX T? ,(p/R, ?;, ,,,)2 
(’ + v, pi 

(31) 

by stagnation point boundary layer theory 
[22, 231. The values off, obtained in this way, is the characteristic (flow time/recombination 

which essentially depend only on the Prandtl time ratio) for the stagnation boundary layer 

number for highly-cooled walls (H,/H, 5 0.20) [l, 71, Hd= tqe Le h&, 7;,, and 

if the even number is of order unity, are given 
in Table 1. On the other hand, at sufficiently 
low Reynolds numbers where one would predict 
f, to be less thanf,, we assumef, = f,. As shown 
below, this sequence of approximation affords 
a good account of nonequilibrium heat transfer 
down to Reynolds numbers where relatively 

x exp [- (&ie) + &I) (32) 

little dissociation effects remain in the shock 
layer. 

LBb(Z, 0) = ( ,) ll-_y z p+s-2 

To facilitate an analytical solution, the boun- 1 - exp [ - ii/B] 
dary-layer velocity profile may be approxi- 
mated by a perfect gas solution (e.g. reference 

’ 1 -exp[-O,,] 
( > 

[12]) relative to conditions at the outer edge. x exp C- (&i@ + Q,l (33) 

This is consistent with our treatment of the velo- The function a,,, which vanishes at f = f,(z = 
city field in the outer inviscid flow region. More- 0 = l), represents the net reaction rate distribu- 
over, it is justified by the fact that the solutions tion across the boundary layer than would exist 
to the boundary layer energy and specie con- ifthe inviscid flow was in equilibrium [Wi(cQ = 
servation equations for a highly cooled wall are 0] at f,. The recombination rate ( -z2) near the 
not significantly affected by the effect of chemical surface is the major contribution to this function 
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across the layer for a highly cooled wall, the 
contribution of the opposing exponential dis- 
sociation rate term being confined to the region 
near the outer edge. The function gb represents 
the effect of the nonequilibrium dissociation 
rate in the inviscid flow, as carried into the 
boundary layer and modified by the sharply 
decreasing velocity and temperature therein. 
For a highly cooled wall where the dissociation 
rate quenches rapidly across the boundary 
layer, gb Q ab except in the relatively hot gas 
region near the outer edge. Consequently, this 
“carry-over” effect has a negligible influence 
on the gas properties near the surface when 

Zb k ri wi(cci,e)/ori,e3 where the situation is 
completely controlled by the recombination rate 
near the wall. However, at sufficiently low 
ambient densities where appreciable departure 
from equilibrium in the inviscid flow occurs 
together with a rapid freezing out of recombina- 
tion near the wall [Z, G Zi ~i(C(i,e)jCli,e], the 
inviscid dissociation rate becomes the control- 
ling factor in determining the surface properties. 

Relations governing conditions in the gas at 
the wall can be obtained by performing formal 
double integrations of equations (29) and (30). 
Carrying these out and applying the boundary 
conditions, one finds 

z ~ $OJ = z’(o) = 1 _ %,e rb 9z(Jk) 

zF. w 4. w ’ + %,e 

+ 2 Wit%, eVKtJ 

~d.0 
4m WV = 1 - 0, + H,(l - Z) -a,(L) 

+ H sc ri Wi(C(i,e) 
d 

ai, e 
me) 

~OcL) J?(L) 

[ S,(L) - m 1 
where 

SM.) 
y=(L) = l exp [ - SC [ fds] 

tl 9 

(34) 

(35) 
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{ [ exp [SC @I % dv1 dv Wb) 
We) 

ILL) = j exp [- SC [/dvl dvl (36~) 

and where Ye(f), Y:(f) and Z&f) are obtained 
from equations (36) by replacing SC with Pr in 
the exponential terms involving j f dq. The 

0 

functions zf, w and z>, w corresponding to frozen 
shock layer flow are given by 

Z F,w = &i,’ z;,w = r1 + iw ~:x,)l- 1 (37) 

It is noted that the ratios Ye(fJ9Jfb) and 
S~(f,)/P(f,) are exactly equal to unity for 
Le = 1 regardless of the magnitude of the reac- 
tion rates or the Reynolds number. Furthermore, 
for highly cooled walls, they are very weak 
functions of Le alone when 0.5 5 Le 5 2 [7]. 
Since the last term in equation (35) therefore 
vanishes identically for Le = 1 and is usually 
negligible compared to unity otherwise, it will 
henceforth be neglected. 

We can now solve equation (34) for Z, con- 
sidering the simultaneous effects of gas phase 
and catalytic surface reaction, as follows. By 
recognizing that the major contribution of the 
function Br,(z, 13) to the integral Y;(f,) for highly 
cooled walls derives from the recombination 
rate near the surface regardless of the surface 
catalycity, it is possible to accurately approxi- 
mate SI(f,) and 4f(f,) by the simplified ex- 
pressions [7] 

+ 2 t-w zz(f,) yFZ + &? z,z(f,) YF,] (384 

Yf(f,) E xi, (38b) 

where .YF, 2 3 and s$ are reaction rate integrals 
based on’ the known frozen flow solution 
[values are given in the Appendix along with 
ZL(fe)]. Since the underlying physical arguments 
and simplifications leading to equation (38) 
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essentially depend only on the highly cooled 
wall assumption (see reference 7 for a detailed 
discussion), these approximations may also be 
used in the present problem provided : (1) condi- 
tions at f = f, based on the nonequilibrium 
inviscid flow solution (rather than equilibrium 
inviscid flow values) are used in evaluating the 
parameters 8,, ed, H,, rb and Ti ; (2) a vorticity- 
interaction solution for the boundary layer 
velocity profile is used in evaluating the func- 
tions (36). Then, substituting equation (38) into 
equation (34) and solving the resulting quadra- 
tic in Z we obtain 

function of (1 + r,,) I’* for different values of the 
parameter a,, e zF, w (1 + rd). It is seen that this 
parameter has a small effect when less than unity, 
in which case Z/(1 + r,J becomes a universal 
function of (1 + rd) r* alone regardless of the 
individual homogeneous or heterogeneous re- 
action rates. . 

When the inviscid flow is in equilibrium 
(rd = 0), equation (39) reduces to precisely the 
result given in reference [7]. On the other hand, 
when there is a significant departure from 
equilibrium at the edge of the boundary layer 
and the inviscid dissociation rate is the control- 

_ = t1 + %,fzzF,w(l + rd)]* + 4(1 + r&r*}’ - [l - cli,,ZF,w(l + rJ] Z 

1 + rd 2[ai,e zF,w(l + rd) + (1 + rd) r*] 

(39) 

where 

rd G 
SC Ti Wi(Cri, J S$ 

%, e 
(40) 

represents explicitly the “carry-over” effect of the nonequilibrium dissociation rate at the edge of 
the boundary layer and 

is a composite Damkijhler number for com- ling gas phase reaction [r* 4 1, r, 2 O(l)], we 
bined gas phase and catalytic surface recombina- find 
tion reaction. In Fig. 4,Z/( i + rd) is plotted as a Z?:l+r, (42) 

FIG. 4. Universal nonequilibrium boundary layer atom concentration 
solution. 
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Since rd h PiBi w pa, R, for fixed ambient gas 
properties and free-stream velocity, equation 
(42) implies that binary scaling holds in the 
boundary layer, as would be expected for negli- 
gible recombination. 

Using equations (34) and (35), the nonequili- 
brium heat transfer can now be expressed in 
terms of 2. To do this, we identify 

[I,(L) QWIF = qi., - TV) + Le kl 
x 5, cli. s ZF. w OFF (434 

[me Qwleq = cp (T.,. - TJ 

as the heat-transfer functions for chemically 
frozen or fully equilibrium shock layer flow. 
respectively. Then using equation (6) together 
with the fact that H, E Hi, e 2 Hi, w, substitution 
of equations (34), (35) (with last term dropped) 
and (43b) into equation (18b) yields 

INGER 

literature, evaluate Ti and [, from equation (25) 
and (19) respectively, and calculate a first ap- 
proximation for the post shock properties 
(including f, and Re,) assuming frozen flow 
across the shock without shock slip. (2) Upon 

selecting f, = ji from Table 1, determine the 
nonequilibrium inviscid flow state gi,(,, T,, 
[and hence from equations (23) and (31) the 
values of .c%!~,~ and I”,] according to the pro- 
cedure outlined in the last paragraph of Section 
3(a). (3) Now evaluate Sz,, IJf,), .a,, j and 
9; from the Appendix and z~,,, rd and r* 
from equations (37), (40) and (41) respectively. 
(4) The key quantity Z may now be evaluated 
from either equation (39) or Fig. 4, from which 

Table 1. Location oJ boundary layer 
edge for highly-cooled walls 

__- 

P, 0.50 D70 1.00 

/ e 4.48 3.38 2.19 

I, Qw 1 - 0, + (1 - Z) H,E~,W~z(LJl + in, z~,w H, Z MLJ ------= 

I-,,+,,.(~jLeH~$-I] 

(44) 

llIB(AJ Qwl, 

When Le = 1, the right-hand side of equation 
(44) can be shown to reduce to the simpler 
value [H, - H(O)]/(H, - CPT,,) given by 
direct integration of the enthalpy form of the 
energy equation. 

4. APPLICATION OF THEORY 

(a) Calculation procedure 
To facilitate use of the present solution, it is 

desirable to outline the essential computational 
steps involved. Having specified the free stream 
conditions, body size, wall temperature, surface 
catalytic efficiency and the appropriate thermo- 
chemical properties of the gas such as shown in 
Table 2, one proceeds as follows. (1) Establish 
the equilibrium inviscid stagnation properties 
(P~,~, /Ii, etc.) from information available in the 

Table 2. Parameters used in example calculations 

cP = 4.5 R, 

kk = 259 x 10“’ (4500’-K)- cm6 mole-’ s ’ 
s = 1.5 
w =-1.5 

A = exp 4,287 

TO = 101 276°K 

T. = 3143’K 

h, = 3.183 x 10’ ft*/s’ 

S,(L) = Le-“‘45 3a,(f,) 

R, = 3.11 x lo3 ft2 se’degK_’ 

ph! = 0.70 

Le = 1.00 
RB = 1 ft 

L = 15WK 

v, = 26000 ft/s 

PR PR = P&S 
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the atom concentration at the wall can be calcu- 
lated as a(0) = ai, e zf,,,Z. Using the approxi- 
mate value [7] YO(f,)/Y,(f,) = Le-0‘45, the 
corresponding nonequilibrium heat-transfer 
ratio Q/Qes is then found from equation (44). 

Following this procedure, it has been found 
that the application of the present solution to 
practical problems is rapid and straightforward. 
When the binary scaling principle governing the 
dissociation-dominated portion of the non- 
equilibrium flow regime is also used, a wide 
range of total enthalpy, Reynolds number and 
body surface conditions can be treated. In this 
connection, it is noted that an arbitrary degree 
of free stream dissociation may be included, 
provided that the state of such dissociation is 
consistent with our hypersonic strong shock 
assumption [24]. 

(b) Results for nonequilibrium heat transfer 
A typical result of the present theory is 

illustrated in Fig. 5, where the stagnation point 
heat-transfer ratio Q/Q_ is plotted versus 
altitude for a perfectly non-catalytic axisym- 
metric body with R, = 1 ft flying at 26000 ftjs 
in the undissociated standard atmosphere, as- 
suming Le = 1. (Values of the parameters 
assumed in the calculations, which correspond 
to reference [9], are indicated in Table 2.) To 

bring out the various physical effects involved, 
there is also indicated the result obtained assum- 
ing an equilibrium inviscid flow and that ob- 
tained by neglecting the inviscid reaction “carry- 
over” effect connected with the term rd in 
equation (39). Shock-slip effects have not been 
included in these calculations in order to permit 
a direct comparison with the numerical results 
of Chung [9], who neglected these effects a 
priori. It is seen that the present theory agrees 
well with Chung throughout the nonequilibrium 
flow regime, underestimating the effect of shock 
layer reaction on heat transfer by no more than 
10 per cent. It is noted, however, that this agree- 
ment is noticeably poorer when the explicit 
inviscid reaction “carry-over” effect is neglected, 
resulting in an increasing overestimate of heat 
transfer at the lower densities corresponding to 
dissociation rate-controlled shock layer flow. 

The corresponding atom concentration at the 
edge of the boundary layer predicted by the 
present theory and Chung’s calculations, res- 
pectively, is shown in Fig. 6. Here, also, there is 
good agreement between the two analyses. 

As previously shown, the present theory 
embodies an account of shock-slip phenomena 
on the basis of the inviscid flow gradients, 
assuming an adiabatic shock. To evaluate the 
accuracy of approximation in this respect, 

0.2 
NONEQUlLlBRlUM 

ALTITUDE, kft 

FIG. 5. Nonequilibrium stagnation point heat transfer; V, = 26000 ft/s, 
R, = 1 ft, Le = 1, non-catalytic surface. 
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FIG. 6. Nonequilibrium atom concentrations, 

Fig. 7 illustrates the heat-transfer curves obtained 
both with and without shock-slip effects in- 
cluded, along with Cheng’s [lo] numerical solu- 
tion which included shock-slip. Since the latter 
results pertain to Le = 1.4 and a slightly 
different pre-exponential temperature depen- 
dence for the dissociation rate than used here 
(namely, that appropriate to the Lighthill 
model), they have been normalized to Chung’s 
resuhs at Re, = 900 to expose the shock-slip 
effects alone. It is seen that the predicted effect 
on beat transfer (due in this example entirely to 
concentration jump) agrees fairly well with the 
exact calculations. Equally good agreement is 
evident in Fig. 6 for the nonequilibrium atom 
concentrations at the edge of the boundary layer 
and immediately behind the sh0ck.t 

(c) Effects ofjnite surjiice catalysis 
The effect of a non-vanishing surface cataly- 

city on the nonequilibrium heat transfer results 
of Fig. 5 is shown in Fig. 8 as a function of the 
catalytic reaction parameter &,. It is seen that the 
influence of gas phase reaction is very sensitive 

-_-- --- -.-..- 
t Note that at sufficiently low ambient density, the shock 

concentration jump is independent of altitude. This can be 
understood from equation (26), which shows that for 
negligible post-shock 

ri 4,s f; * 

recombinations, (a,,. - a_) - 
- p pi’ = const. at fixed ambient gas composi- 

tion and velocity. 

to the surface catalycity when the shock layer is 
appreciably out of equilibrium and significantly 
dissociated. This sensitivity is greatest when the 
boundary layer is chemically frozen while the 
inviscid flow is essentially in equilibrium ; how- 
ever, it persists well into the lower Reynolds 
number regime of completely dissociation rate- 
controlled flow. 

In connection with these general results, it is 
of interest to indicate what actual degrees of 
surface catalycity and heat transfer can be ex- 
pected for various surface materials. Accord- 
ingly, i, and the corresponding heat transfer 
were evaluated as a function of altitude assum- 
ing yW = 10e2 (typical of metallic oxides [Xi]), 
10W3 and iOe4 (typical of glassy-type materials, 
such as Pyrex [25]); the results are indicated on 
Fig. 8 by the dashed curves. It is seen that blunt 
bodies having a metallic-type surface behave as 
very nearly perfectly catalytic throughout most 
of the nonequilibrium flight regime in this ex- 
ample and consequently experience virtually 
the full equilibrium stagnation heating level 
regardless of altitude. Here, the body surface 
tends to act in a perfectly noncatalytic manner 
only at very high altitudes where little dissocia- 
tion occurs in the shock layer. In sharp con- 
trast, glassy-type surfaces having catalytic effi- 
ciencies of the order of lo-’ or less behave as 
though they were perfect noncatalysts under 
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the same flight conditions. They therefore ex- 
perience stagnation heat-transfer rates sub- 
stantially lower than the equilibrium value 

08 - 

_ PRESENT 
THEORY : 

.DO6- 

a 
q 

2 O4- 

FIG. 7. Shock-slip effect on nonequilibrium heat transfer 

I I I I I I I I I I I ’ c.r=~ I ’ 
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51=0 
( PERFECTLY 

n 1 1 I I I I 
NON-CATALYTIC) 

I I I I 1 / I I 

720 150 180 210 240 270 300 

ALTITUDE, kft 

FIG. 8. Effect of surface catalycity on nonequilibrium heat transfer. 

throughout the altitude range 150-270 kft. 
Clearly, the choice of surface materials from the 
standpoint of their surface catalytic efficiency 
can have an important bearing on convective 
heating of hypervelocity vehicles that spend 
appreciable time at high altitudes. In this respect, 
current day ablation materials of glassy-like 
character would appear advantageous for re- 
ducing (as well as protecting against) the heat 
loads. 

5. CONCLUSION 

It has been shown that the problem of non- 
equilibrium viscous stagnation flow on blunt 
bodies over a wide range of practical conditions 
resides mainly in one basic flow regime. This 
regime, which extends down to Re, 2 100, is a 
nonequilibrium vorticity interaction regime with 
a thick boundary layer and a reacting inviscid 
flow region near the shock. Approximate analy- 
tical solutions were obtained for both the in- 
viscid and boundary layer regions, including an 
arbitrary surface catalycity and a first order 
account of shock slip effects assuming an adia- 
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batic bow shock. The resulting predictions of 
atom concentrations and heat transfer were 
found to be within 10 per cent of existing exact 
numerical solutions throughout the nonequili- 
brium flow regime. 

The present theory completely describes the 
transition from recombination rate-controlled 
nonequilibrium boundary-layer behavior with 
an equilibrium-dissociated inviscid flow to 
dissociation rate-controlled, fully viscous shock 
layer flow with binary scaling at low Reynolds 
numbers. Immediate application is found in a 
related experimental study of nonequilibrium 
heat transfer being carried out at this laboratory 
using the catalytic probe [26J, where measure- 
ments are made throughout the nonequilibrium 
shock layer flow regime. An equally important 
aspect of the present theory is that it permits 
comparatively simple yet accurate engineering 
calculations and so may be used for preliminary 
design analysis of hypervelocity vehicles. An 
example of this was given in Fig. 8, where it was 
shown that the choice of surface material from 
the standpoint of its catalytic efficiency can 
strongly affect the convective heating of such 
vehicles at high altitudes. 
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APPENDIX 

Numerical values of the integral functions 
defined by equations (36) have been computed 
for a wide range of the relevant fluid-mechanical 
and thermochemical parameters using boun- 
dary-layer velocity profiles including vorticity- 
interaction effects [12]. Under the conditions 
T,/r, w < 0.30 and Sz, < 1, it was found that 

I,(f,) N [0.47 W3 (1 + 0.50 Q2, 

where 

- 0.11 szf,]-’ (A-l) 

integrals YF,, *, 3 and Sd, are given by 

Ypj = (1 + 0.50 0, - 0.11 Qb)-Nj 

[9z,(m)]j 0’ = 192, 3) (A-3) 

,a$ = 
a([e) 

j exp (- SC J?fdq) {j! exp (SC jfdq) 
0 0 0 0 

0” +‘-’ exp [-(0,/e,) + Q,] dy} dy (A-4) 
where’N, = 1.35, N2 = 0.36 and N, = -0.66, 
respectively. The [9z,F (“‘lj are precisely the 
recombination rate integral functions of 0,, 8, 
and w given in references (7) and (16). The in- 
tegral ,a$, is plotted as a function of 8, and 8, in 

* = [(vcJPiRb)2 - (Pi,wlPi,e)l [I - t1 + v)(Pi,slPu3)(PRPR/PsPs ReJ] 
e 

{(P.GJPRPR)[~P~/‘(~ + v) PJ(l/,lBiR,) Res}* 
(A-2) 

is a vorticity-interaction parameter similar to Fig. 9 for different values of the parameter 
Cheng’s, here generalized to include inviscid w + s. For convenience, a tabulation of some 
nonequilibrium reaction and shock velocity representative values of all four reaction rate 
slip effects. Correspondingly, the reaction rate integrals is given in Table 3. 

001 
0 5 IO I5 20 25 30 35 40 45 

FIG. 9. Boundary layer dissociation rate integral */(d/F). 
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Table 3. Reaction rate integraljimctions for SC = 050, CO = - 1.5. S = 0 

J*,r(=h I:,,, j&,(X)3 .,: 
0, ll, = 5 v,= 15 8, = 25 a, = 5 0, = I5 0, = 25 0" = 5 0, = 15 0" = 25 0, = 5 0, = 15 0, = 25 

.~ 
0.04 82 x IO' 8.2 x IO' X.2 x 10' 18 x 102 I.9 x 10' 2 x IO' I.4 x IO I.5 x IO I6 x IO 6-37 x IO-' 1.43 x IO ' 281, x IO- 
010 8.4 x IO' 8-4 x lo2 8.4 x IO' 5.2 x 10 5.6 x IO 60x10 5.9 6.5 72 7.1 x IO ' I.65 x 10 / 4-95 x IO-' 
O-20 I.6 x 10' l-6 x 10' l-6 x 1O2 I.7 x IO l-83 x IO 20 x 10 3-o 3.5 4-o 8.5 x 10-l 210 x 10-1 7.40 x 10-J 
0.35 41 x 10 4.2 x IO 43x10 6.2 76 8.7 I IO I.98 242 105 2.82 x IO ' 1 IX x lo-' 
050 I.64 x IO 1.75 x IO 1.90 x 10 3.2 5.3 54 I32 3.R? x 10~' l-73 x IO ' 

R&sum&On considbre un ecoulement avec dissociation au point d’arr&t sur des corps arrondis fortement 
refroidis places dans un 6coulement hypersonique d’air ou de gaz diatomique, en tenant compte des 
effets de nombre de Reynolds et d’une rtaction chimique & travers la couche de choc. On suppose que la 
vitesse de recombinaison atomique sur la surface est arbitraire. En se basant sur le modele de Cheng d’une 
couche de choc mince en rtgime continu, on montre que, dans de nombreuses applications, des effets 
importants dus & la r&action en phase gazeuse se produisent dans unrCgime d’inttraction aveq un bcoule- 
ment rotationnel en non-tquilibre, ce qui implique un passage du contr6le par la vitesse de recombinaison 
au contrBle par la vitesse de dissociation. On donne une solution analytique approchte pour ce rkgime qui 
prtdit des concentrations atomiques et un transport de chaleur en non-tquilibre g 10 pour cent p&s des 

solutions numeriques exactes jusqu’g des nombres de Reynolds de couche de choc de 100. 

Zusammenfassung-Die StaupunktstrGmung mit Dissoziation an stark gekiihlten stumpfen KGrpern m 
einem Luft- oder zweiatomigen Gasstrom von Hyperschallgeschwindigkeit wird untersucht. Einfliisse 
kleiner Reynoldszahlen und chemische Nichtgleichgewichtsreaktionen innerhalb der StossSchicht sind 
ebenfalls beriicksichtigt. Eine beliebige Geschwindigkeit der Staurekombination an der Obernlche ist 
zugelassen. Auf Grund des Kontinuummodells dinner StossSchicht von Cheng wird gezeigt, dass in 
vielen Anwendungen die kennzeichnenden Einfliisse der Gasphasenreaktion in einem verallgemeinerten 
Strcmungsregime mit Wirbelwechselwirkung im Ungleichgewicht auftreten. einschliesslich des tibergangs 
vom rekombinations- zum dissoziationskontrollierten Verhalten. Eine fiir dieses Regime angegebene 
analytische NIherungslBsung gestattet Atomkonzentrationen und den WLrmelbergang im Ungleiche- 
wicht mit weniger als 10 prozent Abweichung von exakten numerischen Lijsungen zu ermitteln, fiir 

Reynoldszahlen (StossSchichtj bis herab zu 100. 

Aamraqm-PaccmaTpuBaeTcK 06TeKaHKe cKnbK0 0xnamnaeMHx aaTynneHmx Ten caepx- 
8ByKOBblM nOTOKOMBOB~yXaK~K~ByXaTOMHOrOra~aBOKpeCTHOCTKKpUTU~eCKOtTO~KW~pEI 
IiKaKIlX WWlaX PehIOJfbJ(Ca II HepaBHOBeCHOtt XKMWIeCKOft peaKWiSi B yAapHOM CJIOe. 
AOnyCKaeTCfi npOKaBOJlbHaH CKOpOCTb peKOM6KHaIWi aTOMOB Ha nOBepXHOCTH. Ha OCHO- 
BaHllH rdoaeini qeKra HenpepblBKoro TOHKO~O ynapHor0 mofi noKaaaH0, 9To Bo MHorKx 
cnysarrx peaKquK B raaoBog @aae aKa%iTenbKo BJIHHI~T Ha pelttnm o606nieHHoro KepaBHo- 

BecHoro aasuxpeHHor0 noToKa, BKJWIafl nepexox OT pewiima, onpe~ememoro peKom- 

6KHaqKeP, K pe?KHMy, 0npenenseMoMy cKopocTbm miccoquamni. AaeTcK npu6suHteHKoe 
aKanKTwlecKoepemeHKe ~JIR aToropewaMa,KoTopoenoa~oJrKeTpaccsKTaTbKoH~eKTpa~u~ 

ZlTOMOB II HepaBHOBeCHd nepeHoc TenJIa C TO'SHOCTLIO A0 10% n0 CpaBHeHKH, CToqH6IMU 
9KcneHHblmK pemeawinfa npK gncnax PetHonbnca AnR: yAapHorocnorr,paBHnX 100. 


